Aromatic compounds production, usage

Dr. Ákos Fürcht 05.10.2022 BME

Aromatic compounds – Sources

Aromatic compounds – Composition

Content	Reformate	Pygas	COLO
Benzene	3-12 %	25-34 %	60-80 %
Toluene	12-25 %	15-22 %	9-14 %
Xylene	15-30 %	5-12 %	1-3 %
TOTAL	35-65 %	45-65 %	70-96 %

Aromatic compounds – Usage

Benzene

History

- Michael Faraday 1825 first time to be isolated, but benzene remained a "mystery" for almost a century (its behaviour and reactivity was different from any other compound with double bonds)
- August Kekulé 1865 supposed molecular structure (alternating single-double bonds, which are in continuous exchange – "Kekulé formula")
- Linus Pauling 1930'ies quantum mechanical verification of Kekulé's theory (common electron cloud)

Driving forces

- XIX. century limited, low volume usage, mainly as solvent
- First half of XX. century it was recognised that benzene has high octane number (RON 113), as a consequence there emerged an incentive to recover all the by-product benzene in the coke ovens at steel mills
- Around WWII beginning of petrochemical usage, explosives production
- Since the middle of XX. century rapid growth of petrochemical consumption (nylon, styrene, etc.)

Sources – Coke production

- Steel processing aid
- Source: coal
- Processing: destructive distillation of coal
- Thermally cracking 1 ton of coal above 1900°C, excluding air, "pure" coal (coke) remains, but the benzene rings remain partially untouched "
 - 750 kg coke
 - 250 kg side products
 - Coal gas
 - Coal oil
 - Coal tar

Sources – Coke production

- Coal gas
 - It was used as municipal lighting around 1900
- Coal tar
 - Once it was an insulation material in the construction industry and the component of asphalt roads
- Coal oil
 - Liquid with ~80% aromatic content, especially
 - 60% benzene
 - 15% toluene
 - 5 % xylenes
 - Until the 1950'ies the steel industry was the primary source
 - After that the benzene demand growth was much faster than the steel industry would be capable to supply the market with its side product

Sources – Crude oil refining

- Crude oil contains originally only 0,1-0,3% benzene
- Catalytic reforming benzene content is 3-12%, depending on the technology and process severity
- Fluid catalytic cracking 0,5-1,5%

Stream	Benzene content, %	Conditions	Contribution to benzene pool, %
Light SR naphtha	1-5	Crude oil dependent	2-5
HCK gasoline	4-5	Side product	2-5
FCC gasoline	0,5-1,5	Main gasoline component	10-15
Reformate	3-12	Feedstock boiling range, process parameters	75-80

Reforming – Driving forces

• First half of the XX. century

- Rapid growth of gasoline demand due to the expansion of motorisation (limousines in the USA, 5-6 lane highway)
- Gasoline quality improvement in parallel with the compression ratio increase in the Otto engines
- **1949 UOP** introduction of platforming process
 - Octane gain with 30-40 unit
 - Patenting of novel bifunctional catalyst
- Since the 1970'ies lead additive confinement
 - Discontinuation of lead-tetraethyl usage as octane improver (Hungary: termination of usage in 1999)
- **1971 UOP** introduction of CCR process
 - Continuous Catalyst Regeneration (low pressure, "continuous" regeneration) octane number: 100-105
- Hydrogen supply for desulphurisation needs

Reforming – Reactions

- Isomerisation (paraffin \rightarrow isoparaffin)
- Dehydrogenation (naphthene \rightarrow aromatic)
- Dehydrocyclization (paraffin \rightarrow aromatics)
- Hydrodealkylation (alkyl-aromatics \rightarrow aromatics)
- Hydrocracking (bigger \rightarrow smaller molecules)
- Coke formation (polyaromatics \rightarrow coke)
- Alkylation (aromatics \rightarrow alkyl-aromatics)

Reforming – Fixed bed process

Reforming – Fixed bed process

- Gross endothermic reactions
- Increasing volume reactors in series, in order to maintain the heat balance $(1:1 \rightarrow 1:3 \rightarrow 1:5)$
- Temperature: ~500°C
- Pressure: ~15-30 bar
- Cycle time: ~3-12 months
- Catalyst: Pt/Al2O3
- Predominantly formerly built units

Reforming – CCR process

Reforming – CCR process

- Gross endothermic reactions
- Increasing volume reactors in series, in order to maintain the heat balance $(1:1 \rightarrow 1:3 \rightarrow 1:5)$
- The catalyst is in continuous, slow movement
- Temperature: ~500°C
- Pressure: ~6-8 bar
- Cycle time: ~3-4 year
- Catalyst lifetime: ~10-12 year
- Catalyst: typically Pt-Re/Al₂O₃
- Newer built units
- High octane number reformate

Reforming – Gasoline quality

• Standardised aromatic and benzene content of motor gasolines were decreased in the near past

Parameter	MSZ 1998	EU 2000	EU2005
Reid vapor pressure, max kPa	45-90	60	60
Sulphur content, max ppm	500	150	50 (10)
Benzene content, max %	2,0	1,0	1,0
Aromatic content, max %		42	35
Olefin content, max %	-	18	14

Reforming – Benzene content reduction

Sources – Steam cracking

- Old technology since the 1930'ies
- The economic plant capacity is in the range of a couple hundred thousand t/year
- **Different yields** according to the feedstock
- In Hungary, the feedstock is **petrochemical naphtha** (virgin naphtha)
- Strong competition with the newly built, high capacity, gas based Arabic plants

	Pounds per Pound of Feed				
	Ethane	Propane	Butane	Naphtha	Gas Oil
Ethylene	0.80	0.40	0.36	0.23	0.18
Propane/Propylene	0.03	0.18	0.20	0.13	0.14
Butane/Butylene	0.02	0.02	0.05	0.15	0.06
Butadiene	0.01	0.01	0.03	0.04	0.04
Fuel gas	0.13	0.38	0.30	0.26	0.18
Gasoline	0.01	0.01	0.06	0.17	0.14
Gas Oil				0.02	0.08
Pitch	_				0.08

Steam cracking – Technology

Steam cracking – Pygas composition

Composition, wt%

Paraffins + naphthenes	11.8
Olefins	5.5
Diolefins	18.1
Benzene	28
Toluene	13.9
Xylenes	7.2
Styrene	3
C ₉ + aromatics	12.5
Total aromatics	64.6

- Pygas may be used
 - as gasoline blending component
 - as aromatic extraction feedstock

Sources – Toluene hydrodealkylation

- In the case, when toluene demand is lower than the supply, benzene may be produced by hydrodealkylation
- Catalyst:
 - Noble metal catalysis: Pt on alumina support
- Parameters: Fresh hydrogen CH₄ and Misc. light ends - 500-650°C Recycle hydrogen – 20-60 bar • Yields: Catalyst - Benzene: $\sim 90\%$ Hydrögen – Others: ~10% Benzene Clean-up column Reactor Toluene

Heater

Sources – Toluene disproportioning

- In the case, when toluene demand is lower than the supply, benzene and xylenes may be produced by disproportioning
- Catalyst:
 - Noble metal catalysis: Pt and Pd on alumina support + Ce and Nd
 - Non-noble metal catalysis: Cr on alumina/silica support
- Parameters: **Xylenes** Benzene Light ends - 350-500°C Catalyst -- 10-35 bar • Yields: - Benzene: $\sim 40\%$ - Xylenes: ~55% $2C_6H_5CH_3$ + $C_6H_4(CH_3)_2$ C_6H_6 \rightarrow Toluene Heavy Toluene Benzene **Xylene** ends Fractionators Heater Reactor Catalyst regeneration

Toluene

Toluene – Sources, demand

- Sources, like at benzene, but
 - Reforming $\sim 2/3$
 - Steam cracking $\sim 1/3$
 - Coke-oven light oil \sim 0
- Demands are lower
 - than of benzene in absolute volume
 - than of supply in relative volume
- Demand increased during WWII
 - explosives TNT
 - aviation gasoline (RON 103-106)
- Since the 1960'ies
 - aviation gasolines were overpaced by kerosene/JET
 - main area is the motor gasoline octane (+ petrochemistry)

Toluene – Azeotrope distillation

 Methyl-ethyl-ketone (MEK) – water (10%) solvent produces azeotrope mixture with the accompanying components (paraffin, naphthene)

Xylenes

Xylenes – Sources, demand

- **Sources**, like at benzene, but in different ratio
 - Reforming
 - Steam cracking
 - Toluene disproportioning

	Catalytic Reforming	Olefin Plant	Disproportionation
Ethylbenzene	26%	52%	—
Paraxylene	14%	10%	26%
Metaxylene	41%	25%	50%
Orthoxylene	19%	19%	24%

Xylenes – Separation possibilities

- o-Xylene and ethyl-benzene separation is easily executed by distillation, due to their fairly differing boiling points (oX144°C, EB136°C)
- Meta and para isomers physical behaviour
 - Boiling points are closer than <1°C, so separation by distillation would be very expensive (mX139°C vs. pX138°C)
 - Freezing points, however, are largely differing (60°C), so the separation by crystallisation is quite easy (mX-48°C vs. pX13°C)
 - Geometrical conformations are different, so the separation by molecular sieves is also possible (p-xylene is thin) or selective adsorbing on the molecular sieve (mxylene)

Xylenes – Cryogenic crystallisation

- The process is done normally in two crystallisation steps
 - In the first step big p-xylene crystals are formed due to the ultra deep temperature (80-90% purity)
 - In the second step (after melting) the cooling temperature is just between the freezing point of the two compounds, so 99% purity p-xylene may be produced

Xylenes – Adsorption by molecular sieves

- UOP MX Sorbex
 process
 - m-xylene is adsorbed
 - The process is executed on two parallel adsorbers
 - One is in adsorption mode, the other in desorption mode
 - Toluene is used as desorbent typically

Separation methods Aromatic extraction

Aromatic extraction

- Aromatic compounds are typically separated by extraction from the non-aromatic components
 - Classical extraction
 - Extractive distillation
- By prefractioning the boiling range of the source fractions are narrowed (depending on feedstock and goal)
 - Less material needed to be extracted
 - Extraction would be more economic
 - Benzene/toluene/xylene rich fraction
 - Combined fraction
- The different feedstocks may be processed one-by-one or together

Aromatic extraction – Solvents

• **Requirements** of the solvent

- Thermal stability
- Chemical stability
- Low toxicity
- Low corrosivity
- availability
- Moderate cost
- Sufficiently low crystallisation temperature
- Boiling point to be significantly higher than of o-xylene bp
- Specific gravity to be higher than 1,1
- Viscosity to be lower than 2,5 mPa at operating temperature

Aromatic extraction – Solvents

Pure solvent	Developed formula	M (kg/kmol)	7 _f (°C)	T _b (760 mmHg) (°С)	ρ (kg/m ³) (at 20°C)	μ (mPa.s) 0 (°C)
Diethyleneglycol (DEG)	Н(ОСН ₂ СН ₂) ₂ ОН	106.1	8	245	1 116	35.7/20 0.97/140
Triethyleneglycol (TEG)	Н(ОСН ₂ —СН ₂) ₃ ОН	150.2	-7	288	1 123	49/20 0.70/140
Tetraethylene- glycol (TETRA)	Н(ОСН ₂ —СН ₂) ₄ ОН	194.2	-4	291 (300 mmHg)	1 125	61.9/20 1.8/150
Sulfolane	$H_{2}C - CH_{2}$ $ $ $H_{2}C - CH_{2}$ $H_{2}C - CH_{2}$ $O = S = O$	120.2	27.6	287	1 266 (at 30°C)	10.3/30 2.5/100
N-methylpyrro- lidone (NMP)	$\begin{array}{c c} H_2C &CH_2 \\ & \\ H_2C & C = 0 \\ N \\ \\ CH_3 \end{array}$	99.1	-24.4	202	1 027	1.65/25 1.3/30
N-formylmorpho- line (NFM)	$H_{2}C \qquad CH_{2}$ $ \qquad $ $H_{2}C \qquad CH_{2}$ $ \qquad $ $H_{2}C \qquad CH_{2}$ $ \qquad $ $H_{2}C \qquad CH_{2}$	115.1	20	244	1 150	8.13/20 0.65/150
Dimethylsulfo- xide (DMSO)	CH ₃ —S—CH ₃ O	78.1	18.5	189	1 080	1.99/25 1.6/35

Extractive distillation

Integrated aromatic scheme – UOP

- **ED Sulfolane™** yields benzene and toluene by extractive distillation
- THDA [™] toluene and heavier aromatics hydrodealkylation to benzene
- **Tatoray™** toluene and C9/C10 aromatics transalkylation to benzene and xylenes
- **Parex[™]** high purity p-xylene removal from C8 aromatic mixture
- **MX Sorbex™** m-xylene separation from xylene mixture
- **Isomar[™] –** xylene isomerisation according to equilibrium composition

US aromatics production from reformate

2010 US Aromatics Production from Reformate

Utilisation of aromatics

Utilisation – Main products

Utilisation – Benzene

- Ethyl-benzene \rightarrow styrene \rightarrow
 - Polystyrene (PS)
 - Acrylonitrile-butadiene-styrene (ABS)
 - Styrene-butadiene rubber (SBR)

Utilisation – Benzene

- Cumene \rightarrow Phenol (+ Acetone) \rightarrow
 - Phenolic resins (plywood adhesives, electric industry/insulation resins)
 - bisphenol-A \rightarrow
 - Produced since 1891 (2 phenol and 1 acetone molecules)
 - 70% polycarbonate (CD, DVD, bullet proof "glass")
 - 25% epoxy resins (coatings)
- Cyclohexane \rightarrow
 - nylon 6
 - nylon 66
- Aniline \rightarrow
 - − 90% MDI \rightarrow polyurethane
 - 10% paint industry, pigments, weed-killers

Utilisation – Toluene

- Disproportioning \rightarrow
 - Benzene
 - Xylenes
- Hydrodealkylation \rightarrow benzene
- TDI \rightarrow polyurethane

Utilisation – Xylenes

- p-xylene \rightarrow terephthalic acid \rightarrow PET
- o-xylene → phthalic acid anhydride (polyester, alkyd resins, PVC plasticisers)
- m-xylene \rightarrow isophthalic acid (low volume)

Trends

Market prices 2014

Product	2014. jan-jul.	2014. nov.
BRENT DTD CRUDE OIL PLATTS	\$ 760	\$ 557
DIESEL 10PPM FOB ROTT PLATTS	\$ 920	\$ 737
PREM UNL 10PPM (95RON) FOB ROTT PLATTS	\$ 994	\$ 768
NAPHTHA FOB MED PLATTS	\$ 903	\$ 600
BENZENE NWE CONTRACTS PLATTS	\$ 1 280	\$ 1 169
BENZENE SPOT BARGES FOB ROTT PLATTS	\$ 1 419	\$1033
ORTHOXYLENE NWE MONTH CONTR PLATTS	\$ 1 184	\$ 1 137
XYLENE SPOT BARGES FOB ROTT PLATTS	\$1079	\$ 866

p-Xylene – Supply-demand balance

Restrictions on supply

- Decreasing demand for reforming
 - Decreasing fuel demand, lower engine consumptions
 - Europe is moving towards dieselisation, lower consumptions, electric/hybrid drives
 - More stringent quality requirements (aromatics/benzene), alternative/renewable components ratio
 - Bio-ethanol, bio-ETBE
 - Very law US natural gas price (third-half of European) →
 hydrogen demand is cheaper to satisfied by alternatives (SMR)
 - Due to environmental regulations, many refinery implemented its hydrogen producing capacities (10 ppm motor fuels, residue upgrading hydrogen demand)
 - Reformers are utilised at minimum capacity, older ones to be mothballed

Conversion to petrochemical feedstock production???

Literature

- D.L. Burdick, W. Leffler: Petrochemicals in nontechnical language, 4th edition, PennWell, 2010
- W. Leffler: Petroleum Refining in nontechnical language, 4th edition, PennWell, 2008
- M. Bender, BASF SE: "Global Aromatics Supply Today and Tomorrow" on New Technologies and Alternative Feedstocks in Petrochemistry and Refining DGMK Conference October 9-11, 2013, Dresden, Germany
- J. Meister et al., UOP: "Study outlines US refiners' options to reduce gasoline benzene levels" 09/11/2006
- Guangdong Qu, UOP: "Opportunities and Developments in para-Xylene Production" on 2014 China PX Development Forum, April 10-11, 2014, Beijing China
- DeWitt & Hart Energy: "Reformer Operations and Impact on Aromatics Supply - Short and Long Term Outlook on Atlantic Basin"